Three New Compounds from Kadsura longipedunculata

by Jian-Xin Pu^a), Wei-Lie Xiao^a), Hong-Mei Li^b), Sheng-Xiong Huang^a), Sheng-Hong Li^a), and Han-Dong Sun*^a)

a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86-871-5223251; fax: +86-871-5216343; e-mail: hdsun@mail.kib.ac.cn)
b) Kunming University of Science and Technology, Kunming 650204, Yunnan, P. R. China

From the leaves and stems of *Kadsura longipedunculata* Finet et Gagnep (Schisandraceae), a new triterpenoid, schisanlactone E (1), and two new lignans, 9- $(\beta$ -D-glucopyranosyloxy)-3'-methoxy-3,4-(methylenedioxy)-7,9'-epoxylignan-4'-ol (3) and 3-methoxy-3',4'-(methylenedioxy)-9,9'-epoxylignan-4,7'-diol (4), together with seven known compounds, were isolated. Their structures were elucidated by analysis of spectroscopic evidence including extensive 2D-NMR data.

Introduction. - The genus Kadsura (Schisandraceae) is closely related to Schisandra, and many of its species are used as a folk medicine in Taiwan, Japan, and mainland China, mostly as a substitute for Schisandra [1]. It has been reported that some species of this genus contain dibenzocyclooctadienlignans, lanostane, and cycloartane triterpenoids with pharmacological properties, including anti-HBeAg, antihepatotoxic, antitumor, anti-HIV, and anti-lipid-peroxidative activities [2-9]. Kadsura longipedunculata FINET et GAGNEP is a climbing plant widely distributed in the southern part of China. It has been used in folk medicine for the treatment of rheumatoid arthritis as well as gastric and duodenal ulcers [10] [11]. Previous studies on the leaves and stems of Kadsura longipedunculata have resulted in the isolation of two series of novel triterpenoids with unique skeletons, kadlongilactones A and B and longipedlactones A-I [12][13]. Futher chemical analysis of this plant led to the isolation of three new compounds, schisanlactone E (1), 9-(β -D-glucopyranosyloxy)-3'methoxy-3,4-(methylenedioxy)-7,9'-epoxylignan-4'-ol (3), and 3-methoxy-3',4'-(methylenedioxy)-9,9'-epoxylignan-4,7'-diol (4), along with seven known compounds, i.e., β sitosterol [14], daucosterol [14], schizandronic acid [15], parkeol [16], mangiferolic acid [17], licarin A [18], and schizandriside [19] from the AcOEt extract of the Me₂CO extract. This paper describes the isolation and structural elucidation of these new compounds.

Results and Discussion. – Compound **1** was obtained as white powder. Its molecular formula $C_{30}H_{44}O_4$ was determined by high-resolution MS ($[M-H]^-$ at m/z 467.3156), in combination with 1H - and ^{13}C -NMR data ($Table\ 1$), indicating 9 degrees of unsaturation. The IR spectrum showed the presence of an OH group (3435 cm $^{-1}$), a carbonyl group (1724 cm $^{-1}$), and an $\alpha.\beta$ -unsaturated δ -lactone group (1707 cm $^{-1}$).

Fig. 1. a) ${}^{1}H, {}^{1}H-COSY$ (\longrightarrow) and Key HMBC (H \to C) correlations of **1**. b) Key ROESY (\leftrightarrow) correlations of **1**.

Detailed analysis of the HSQC, HMBC, and ROESY data (Fig. 1) established the structure of $\mathbf{1}$ as (12α) -12-hydroxyschisanlactone D^1), $\mathbf{1}$ was named schisanlactone E.

Analysis of the 1D-NMR data and HSQC spectra revealed that 1 contained two carbonyl C-atoms (including an α , β -unsaturated lactone), six quaternary C-atoms (including two olefinic C-atoms), and eight CH (including two olefinic and two oxygenated ones), seven CH₂, and seven Me groups. Apart from two C=C bonds and two C=O groups, the remaining elements of the unsaturation in 1 were assumed to be due to the presence of five rings. Comparison of the 1 H- and 13 C-NMR data with those of the known schisanlactone D (2) [20] showed the presence of the same pentacyclic triterpenoid skeleton,

¹⁾ Trivial name or trivial atom numbering; for systematic names, see the Exper. Part.

Table 1. ¹H- and ¹³C-NMR Data (400 MHz, (D₅)pyridine) of **1** and **2**. δ in ppm, J in Hz.

	1			
	$\delta(H)$	$\delta(C)$	$\delta(C)$	
CH ₂ (1)	$1.68-1.71 \ (m, H_a), 2.00-2.04 \ (m, H_b)$	36.8 (t)	36.8 (t)	
$CH_2(2)$	$2.34-2.40 (m, H_a), 2.68-2.75 (m, H_{\beta})$	34.9 (t)	34.9 (t)	
C(3)		215.5(s)	216.7 (s)	
C(4)		47.7(s)	46.7 (s)	
H-C(5)	1.39 – 1.43 (overlapped)	53.4 (d)	53.6 (d)	
$CH_2(6)$	$1.53-1.56 \ (m)$	22.6(t)	22.6(t)	
$CH_2(7)$	$1.36-1.39$ (overlapped, H_a), $1.63-1.67$ (m , H_β)	28.6(t)	27.8(t)	
H-C(8)	2.22 (dd, J = 4.9, 12.7)	42.2(d)	42.0 (d)	
C(9)		148.6 (s)	147.4 (s)	
C(10)		39.3 (s)	39.2 (s)	
H-C(11)	5.64 (d, J = 4.4)	120.4(d)	116.1 (d)	
$H-C(12)$ or $CH_2(12)$	4.07 (s)	73.0(d)	37.2 (t)	
C(13)		48.7 (s)	44.9 (s)	
C(14)		46.0(s)	47.7 (s)	
$CH_2(15)$	$1.37 - 1.41$ (overlapped, H_a), $1.46 - 1.49$ (m , H_β)	35.5(t)	34.0(t)	
$CH_2(16)$	$1.78-1.85 (m, H_a), 1.34-1.38 (overlapped, H_b)$	26.7(t)	26.9(t)	
H-C(17)	2.61 (dd, J = 9.3, 20.6)	40.2(d)	47.0 (d)	
Me(18)	0.70(s)	15.0(q)	14.3 (q)	
Me(19)	1.16 (s)	22.1(q)	22.0(q)	
H-C(20)	2.04 – 2.08 (overlapped)	39.9(d)	39.2 (d)	
Me(21)	1.32 (d, J = 6.4)	12.3(q)	13.3 (q)	
H-C(22)	4.55 (dd, J = 3.4, 6.9)	80.9(d)	80.6(d)	
$CH_2(23)$	$2.08-2.12$ (overlapped, H_a), $2.28-2.31$ (m , H_{β})	23.9(t)	23.6 (t)	
H-C(24)	6.48 (d, J = 5.9)	140.3 (d)	139.3 (d)	
C(25)		128.0 (s)	128.5 (s)	
C(26)		166.4 (s)	166.5 (s)	
Me(27)	1.93(s)	17.2 (q)	16.9(q)	
Me(28)	1.19(s)	20.7(q)	18.6 (q)	
Me(29)	1.14(s)	26.0(q)	25.7(q)	
Me(30)	1.04 (s)	22.1(q)	21.8(q)	
OH-C(12)	5.74 (br. s)	.=/		

except for the presence of an oxygenated CH group ($\delta(C)$ 73.0) in **1** and the absence of a CH₂ group assigned to C(12) ($\delta(C)$ 37.2) of **2**, indicating that CH₂(12) of **2** was replaced by an oxygenated CH(12) in **1**. This assignment was in accord with the observation of significant downfield shifts of the C(11), C(12), and C(13) signals from $\delta(C)$ 116.1, 37.2, and 44.9 in **2** to $\delta(C)$ 120.4, 73.0, and 48.7 in **1**, respectively. This was further confirmed by the HMBC correlations from H–C(11) ($\delta(H)$ 5.64) and Me(18) ($\delta(H)$ 0.70) to C(12), and by the ¹H, ¹H-COSY correlation H–C(11)/H–C(12) (*Fig.* 1, a). The α -configuration of OH–C(12) was deduced from the ROESY correlations (H–C(11)/H–C(12), H–C(12)/Me_{β}(18), and H_{β}–C(8)/Me_{β}(18)) (*Fig.* 1, b), which was also supported by the upfield shift of C(17) ($\Delta\delta(C)$ = -6.8) caused by the *syn-\gamma* effect between OH–C(12) and H_{α}–C(17) [21].

A molecular formula of $C_{26}H_{32}O_{11}$ was established for compound **3** from its HR-ESI-MS (m/z 543.1843 for [M + Na]⁺). The ¹H-NMR ($Table\ 2$) disclosed a substituted-diarene epoxylignan skeleton [22]. The structure and relative configuration of **3** were established from its ¹H- and ¹³C-NMR ($Table\ 2$), ¹H, ¹H-COSY, HSQC, HMBC, and

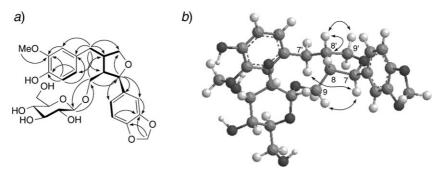


Fig. 2. a) ${}^{1}H, {}^{1}H-COSY$ (\longrightarrow) and Key HMBC (H \to C) correlations of **3**. b) Key ROESY (\leftrightarrow) correlations of **3**.

ROESY data (*Fig.* 2) as 9-(β -D-glucopyranosyloxy)-3'-methoxy-3,4-(methylenedioxy)-7,9'-epoxylignan-4'-ol¹).

The ¹H-NMR of **3** showed the presence of only one downfield-shifted benzylic CH group (δ (H) 4.82–4.85, H–C(7)¹)), one benzylic CH₂ group (δ (H) 2.47–2.51 and 2.92, CH₂(7')), a primary OCH₂ group (δ (H) 3.72–3.77 and 4.04, CH₂(9)), and two aliphatic CH groups (δ (H) 2.43–2.47, H–C(8); δ (H) 2.70–2.79, H–C(8')). Both arene moieties showed a 1,3,4-trisubstitution pattern (see *Table* 2). The ¹³C-NMR data (*Table* 2) and DEPT experiments clearly indicated the basic C₁₈-lignan skeleton of the 7,9'-monoepoxy type [23] and a sugar moiety (δ (C) 62.8, 71.7, 75.2, 78.0, 78.1, and 104.7). In the HMBC experiment (*Fig.* 2, a), correlations from H–C(6') to C(4'), from H–C(5') to C(4') and C(3'), from H–C(2') to C(3'), from MeO to C(3'), and from CH₂(10) to C(3) and C(4), determined that the OH, MeO, and OCH₂O groups were located at C(4'), C(3'), and C(3),C(4), respectively. ¹H-NMR Coupling constants and ¹³C-NMR chemical-shift data indicated that the monosaccharide unit was a glucose, corresponding with the fragment ion at m/z 359 [M –Glc+H]⁺ in the FAB-MS experiment, and the β -configuration was determined by the J(H,H) of the anomeric proton H–C(1") (δ 4.29 (d, J =7.7)). The HMBC correlation of H–C(1") with C(9) required that the glucose be attached to C(9). The ROESY data (*Fig.* 2, b) established the *cis*-configuration of H–C(8) and H–C(8') and the *trans*-orientation of H–C(7) and H–C(8), which was in accordance with precedented cases [22][23].

The HR-ESI-MS of compound **4** gave a quasi-molecular ion peak at m/z 381.1311 ($[M+Na]^+$), corresponding to the molecular formula $C_{20}H_{22}O_6$, requiring 10 degrees of unsaturation. The 1H - and ^{13}C -NMR spectra ($Table\ 2$) suggested that **4** might be a 9,9'-epoxydibenzylbutane lignan [24] with an MeO, an OCH₂O, and two OH groups. Its functional groups were also deduced from IR spectral bands at 3426 (OH), 1609 and 1515 (aromatic) cm⁻¹. The relative configuration of **4** was shown to be as depicted in *Fig.* 3, b, by the correlations observed in a ROESY experiment. Finally, the structure of **4** was established as 3-methoxy-3',4'-(methylenedioxy)-9,9'-epoxylignane-4,7-diol¹).

In the ¹H-NMR spectrum of **4**, two *ABC* systems at $\delta(H)$ 6.63 (dd, J = 1.5, 8.1, H – C(6)), 6.70 (d, J = 8.1, H – C(5)), and 6.77 – 6.82 (overlapped, H – C(2)), and at $\delta(H)$ 6.75 (dd, J = 1.5, 7.7, H – C(5')), 6.75 – 6.80 (overlapped, H – C(6')), and 6.83 (d, J = 1.5, H – C(2')), respectively, were typical of the substituted arene moieties. The functional groups were assigned on the basis of HMBC and ¹H, ¹H-COSY studies (*Fig. 3,a*). Thus, the correlations of an OCH₂O proton to C(3') and C(4'), of the aromatic proton H – C(6) to C(4), and of the OCH proton H – C(7') to C(1'), C(2'), C(6'), C(8'), C(9'), and C(8), as well as the correlation of MeO to C(3), confirmed the positions of the substituents without doubt. ROESY

Table 2. ^{1}H - and ^{13}C -NMR Data (400 MHz, CD₃OD) of **3** and **4** 1). δ in ppm, J in Hz.

	3		4	
	$\delta(H)$	δ(C)	$\delta(H)$	δ(C)
C(1)		138.4 (s)		133.5 (s)
H-C(2)	6.85 (d, J = 1.7)	107.4 (d)	6.77 – 6.82 (overlapped)	113.5 (d)
C(3)		149.2 (s)	, 11	149.0 (s)
C(4)		148.4 (s)		145.9(s)
H-C(5)	6.74 (d, J = 8.2)	108.8(d)	6.70 (d, J = 8.1)	116.2(d)
H-C(6)	6.81 (dd, J = 1.7, 8.2)	120.4(d)	6.63 (dd, J = 1.5, 8.1)	122.2(d)
$H-C(7)$ or $CH_2(7)$	4.82 – 4.85 (overlapped)	84.1 (d)	$2.48 (dd, J = 11.4, 13.6, H_a),$	33.6 (t)
			$2.90 (dd, J = 4.8, 13.6, H_{\beta})$	
H-C(8)	2.43 – 2.47 (overlapped)	51.8 (d)	$2.71 \ (ddd, J = 6.6, 12.1 \ 18.0)$	43.9(d)
$CH_2(9)$	$3.72-3.77$ (overlapped, H_{α}),	68.4(t)	$3.71 (dd, J = 5.9, 8.3, H_a),$	73.6(t)
	$4.04 (dd, J = 6.6, 9.9, H_{\beta})$		3.97 $(dd, J = 6.6, 8.3, H_{\beta})$	
C(1')		133.6 (s)		138.5 (s)
H-C(2')	6.85 (d, J = 1.7)	113.4 (d)	6.83 (d, J = 1.5)	107.3(d)
C(3')		149.0 (s)		148.4 (s)
C(4')		145.8(s)		149.3 (s)
H-C(5')	6.70 (d, J = 8.2)	116.2(d)	6.75 (dd, J = 1.5, 7.7)	108.8(d)
H-C(6')	6.64 (dd, J = 1.7, 8.2)	122.2(d)	6.75 – 6.80 (overlapped)	120.4(d)
$CH_2(7')$ or $H-C(7')$	2.47 – 2.51 (overlapped, H_{α}), 2.92 (dd , J = 4.9, 13.7, H_{β})	33.8 (t)	4.75 (d, J = 6.6)	84.0 (<i>d</i>)
H-C(8')	2.70-2.79 (m)	43.8(d)	2.32 (dd, J = 7.0, 14.0)	54.2 (d)
CH ₂ (9')	$3.71-2.76$ (overlapped, H_{α}),	73.7(t)	$3.79-3.84$ (overlapped, H_a),	60.5(t)
	$3.97 (dd, J = 6.6, 8.2, H_{\beta})$		$3.62 (dd, J = 6.6, 11.0, H_{\beta})$	
H-C(1'')	4.29 (d, J = 7.7)	104.7(d)	•	
H-C2(")	3.21 (d, J = 7.7)	75.2(d)		
H-C(3'')	3.36 (d, J = 8.2)	78.1(d)		
H-C(4'')	3.25 – 2.29 (overlapped)	71.7(d)		
H-C(5'')	3.27 – 3.32 (overlapped)	78.0(d)		
CH ₂ (6")	$3.86 (dd, J = 2.2, 12.1, H_{\alpha}),$	62.8 (t)		
	3.67 (dd, 5.5, $J = 12.1$, H_{β})			
MeO-C(3')	3.82 (s)	56.5 (s)	3.82 (s)	56.4 (s)
OCH ₂ O	5.90 (s)	102.3(t)	5.91 (s)	102.3(t)

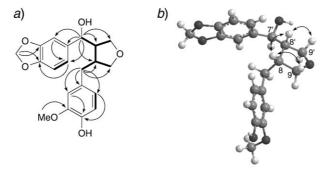


Fig. 3. a) ${}^{1}H, {}^{1}H-COSY$ (\longrightarrow) and Key HMBC (H \rightarrow C) correlations of **4**. b) Key ROESY (\leftrightarrow) correlations of **4**.

correlations were observed between H-C(8') and H-C(8) as well as $H_{\beta}-C(9')$, and H-C(8) gave a ROESY correlation to $H_{\beta}-C(9)$, which confirmed that H-C(8) and H-C(8') were in β -orientation. Because of free rotation around the connecting bond between C(7') and C(8'), we could not determine the relative configuration at C(7').

This project was supported by grants from the *Yong Academic and Technical Leader Raising Foundation of Yunnan Province* (2006PY01-47), the *Natural Science Foundation of Yunnan Province* (2005XY04 and 2006B0042Q), and *Innovation Project of ACS* (0602561221).

Experimental Part

General. Column chromatography (CC) and TLC: silica gel (200 – 300 mesh) from Qingdao Marine Chemical Factory, Quingdao, People's Republic of China. Melting points: XRC-1 micro melting point apparatus; uncorrected. Optical rotations: Jasco DIP-370 digital polarimeter. IR Spectra: Bio-Rad FtS-135 spectrophotometer; KBr pellets; in cm⁻¹. UV Spectra: UV-210A spectrometer; $\lambda_{max}(\log \varepsilon)$ in nm. 1D-and 2D-NMR Spectra: Bruker DRX-500 instruments; SiMe₄ as an internal standard. MS: VG Auto-Spec-3000 spectrometer; in m/z (rel. %).

Plant Material. The leaves and stems of K. longipedunculata were collected in the Erlang mountain region of Sichuan Province, China, in August 2004, and identified by Prof. Xi-Wen Li, Kunming Institute of Botany. A voucher specimen has been deposited in the Herbarium of the Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried and powdered stems and leaves (11 kg) of K. longi-pedunculata were extracted with 70% aq. Me₂CO (4×301) at r.t. to yield an extract, which was successively extracted with petroleum ether and AcOEt. The AcOEt extract (300 g) was subjected to CC (silica gel (1.5 kg; 200–300 mesh), CHCl₃/Me₂CO gradient 9:1, 8:2, 7:3, 6:4, 5:5): Fractions 1–5. Compound 3 (13 mg) was obtained from Fr. 1. Compounds 1 (8 mg) and 4 (3 mg) were obtained from Fr. 3 after repeated CC (silica gel (CHCl₃/PrOH), followed by semiprep. HPLC (Agilent-1100 HPLC system, Zorbax SB-C-18 (Agilent), 9.4 mm × 25 cm, MeOH/H₂O).

 $(12\alpha,22R)$ -12,22-Dihydroxy-3-oxolanosta-9(11),24-dien-26-oic Acid δ -Lactone (1): White powder. [α]^{25.8} = +175.0 (c = 0.28, pyridine). UV (MeOH): 370 (2.17), 205 (4.52), 191 (4.08). IR (KBr): 3435, 2972, 2949, 2933, 2866, 1724, 1707, 1651, 1632, 1122, 1028. NMR: see *Table 1*. FAB-MS (neg.): 559 (8, $[M+Gly-H]^-$), 467 (100, $[M-H]^-$). HR-ESI-MS (pos.): 467.3156 ($C_{30}H_{43}O_4^-$, $[M-H]^-$; calc. 467.3161).

 $\begin{array}{l} \{(2R*,3S*)-2-(1,3\text{-}Benzodioxol\text{-}5\text{-}yl)\text{tetrahydro-4-}[(4\text{-}hydroxy\text{-}3\text{-}methoxyphenyl)\text{methyl}]\text{furan-}3\text{-}yl\}\text{-}methyl β-D-Glucopyranoside (3): Pale yellow powder. } [a]_{D}^{15.0} = -22.4 \ (c=0.98, \, \text{pyridine}). \ UV \ (\text{MeOH}): 350 \ (3.24), 283 \ (4.15), 203 \ (5.15). \ IR \ (\text{KBr}): 3417s \ (\text{br.}), 2927, 2886, 1713, 1607, 1516, 1489, 1445, 1376, 1271, 1248, 1157, 1124, 1098, 1076, 1036. \ NMR: see \textit{Table 2. FAB-MS (pos.): } 613 \ (5, [M+Gly+H]^+), 521 \ (4, [M+H]^+), 274 \ (100). \ HR-ESI-MS \ (pos.): 543.1843 \ (C_{26}H_{32}O_{11}Na^+, [M+Na]^+; \, \text{calc. } 543.1842). \end{array}$

 $\begin{array}{l} \alpha\text{-}\{(3\mathrm{S}^*,4\mathrm{R}^*)\text{-}Tetrahydro\text{-}4\text{-}[\text{-}4\text{-}hydroxy\text{-}3\text{-}methoxyphenyl})methyl]furan\text{-}3\text{-}yl\}\text{-}1\text{,}3\text{-}benzodioxole\text{-}5\text{-}methanol} \text{ (4): } Pale yellow powder. } [a]_{\mathrm{D}}^{\mathrm{I}5,3} = +1.6 \text{ (}c = 0.32, \mathrm{MeOH)}. \text{ UV (MeOH): } 283 \text{ (}4.00\text{), } 203 \text{ (}4.93\text{).} \\ \mathrm{IR (KBr): } 3426, 2932, 1709, 1609, 1515, 1489, 1445, 1369, 1272, 1247, 1208, 1124, 1098, 1038. NMR: } Table 2. \text{ FAB-MS (pos.): } 543 \text{ (}2, [M+2\ \mathrm{Gly} + \mathrm{H}]^+\text{), } 451 \text{ (}7, [M+\mathrm{Gly} + \mathrm{H}]^+\text{), } 358 \text{ (}44, M^+\text{), } 331 \text{ (}41\text{), } 237 \text{ (}40\text{), } 219 \text{ (}72\text{), } 137 \text{ (}100\text{). } \text{HR-ESI-MS (pos.): } 381.1311 \text{ (}C_{20}\mathrm{H}_{22}\mathrm{O}_6\mathrm{Na}^+, [M+\mathrm{Na}]^+; \text{ calc. } 381.1314\text{).} \\ \end{array}$

REFERENCES

- [1] N. Ookawa, Y. Ikeya, H. Taguchi, I. Yosioka, Chem. Pharm. Bull. 1981, 29, 123.
- [2] J. S. Liu, L. Li, Phytochemistry 1995, 38, 241.
- [3] D. F. Chen, S. X. Zhang, K. Mutsuo, Q. Z. Sun, J. Feng, Q. Wang, M. Teruo, N. Yoshitaka, T. Harukuni, N. Hoyoku, H. K. Wang, L. Suan, N. Morris, K. H. Lee, J. Nat. Prod. 2002, 65, 1242.
- [4] D. F. Chen, S. X. Zhang, H. K. Wang, S. Y. Zhang, Q. Z. Sun, L. M. Cosentino, K. H. Lee, J. Nat. Prod. 1999, 62, 94.

- [5] X. W. Yang, M. Hirotsugu, H. Masao, N. Tsuneo, T. Yasuhiro, K. Tohru, D. F. Chen, G. J. Xu, H. Toshihiko, E. Michael, M. Hiroshi, Chem. Pharm. Bull. 1992, 40, 1510.
- [6] S. Y. Li, M. D. Wu, C. W. Wang, Y. K. Kuo, R. L. Huang, K. H. Lee, Chem. Pharm. Bull. 2000, 48, 1992.
- [7] L. N. Li, H. Xue, R. Tan, Planta Med. 1985, 51, 297.
- [8] L. N. Li, H. Xue, Planta Med. 1986, 52, 492.
- [9] J. S. Liu, L. Li, Phytochemistry 1993, 33, 1293.
- [10] Compilation of Chinese Herb Medicine 1975, 1, 581, People's Publishing House, Beijing.
- [11] Pharmacopoeia of the People's Republic of China, 1977, 1, 396.
- [12] J. X. Pu, W. L. Xiao, Y. Lu, R. T. Li, H. M. Li, L. Zhang, S. X. Huang, X. Li, Q. S. Zhao, Q. T. Zheng, H. D. Sun, Org. Lett. 2005, 22, 5079.
- [13] J. X. Pu, R. T. Li, W. L. Xiao, N. B. Gong, S. X. Huang, Y. Lu, Q. T. Zheng, L. G. Lou, H. D. Sun, Tetrahedron 2006, 62, 6073.
- [14] R. X. Tan, J. L. Wolfender, L. X. Zhang, W. G. Ma, N. Fuzzati, A. Marston, K. Hostettmann, Phytochemistry 1996, 42, 1305.
- [15] L. K. Sy, M. K. Richard, Saurders, D. B. Geoffrey, Phytochemistry 1997, 44, 1099.
- [16] M. A. Palmer, L. J. Goad, T. W. Goodwin, D. B. Copsey, R. B. Boar, Phytochemistry 1978, 17, 1577.
- [17] V. Anjaneyulu, P. Satyanarayana, K. N. Viswanadham, V. G. Jyothi, R. K. Nageswara, P. Radhika, Phytochemistry 1999, 50, 1229.
- [18] A. M. P. de Diaz, O. R. Gottlieb, A. F. Magalhaes, E. G. Magalhaes, H. R. Maria, Y. Massayoshi, G. S. M. Jose, *Phytochemistry* 1997, 45, 1263.
- [19] M. Takani, K. Ohya, K. Takahashi, Chem. Pharm. Bull. 1979, 27, 1422.
- [20] J. S. Liu, M. F. Huang, Acta Chim. Sin. 1984, 42, 464.
- [21] Q. B. Han, Z. D. He, C. F. Qiao, H. X. Xu, H. D. Sun, Heterocycles 2003, 60, 933.
- [22] A. A. El Gamal, K. Takeya, H. Itokawa, A. F. Halim, M. M. Amer, H. E. A. Saad, *Phytochemistry* 1997, 45, 597.
- [23] P. K. Agrawal, R. S. Thakur, Magn. Res. Chem. 1985, 23, 389.
- [24] G. Belkis, R. Daniel, G. Tekant, U. Nehir, H. Manfred, Phytochemistry 1996, 42, 695.

Received November 8, 2006